Introducing Chaos Genius for Databricks Cost Optimization

Get started

HOW TO: Import and Read Excel Files in Databricks (2025)

Data doesn't come in one flavor anymore. Today's data ecosystem is a mix of formats—from structured data like relational databases to unstructured data like text and multimedia files, and semi-structured data such as JSON, XML, and Excel files. Excel files sit right in the middle, blending elements of both structured and unstructured data and is widely used in business intelligence and data analysis. However, integrating and importing these seemingly straightforward .xlsx excel files into advanced platforms like Databricks often presents a technical challenge, requiring a clear understanding of tools and workflows to bridge the gap effectively.

In this article, we walk you through the step-by-step guide to import, process and read Microsoft Excel files in Databricks, covering two main techniques: using Pandas with PySpark and leveraging the com.crealytics.spark.excel library.

Why Work with Microsoft Excel Files in Databricks?

Microsoft Excel files are everywhere—used for reporting, ad hoc analysis, and data sharing. Here’s why importing Excel files into Databricks can be valuable:

  • Databricks, powered by Apache Spark, processes large datasets that Microsoft Excel alone cannot handle.
  • Automate data transformations, cleaning, and enrichment for Microsoft Excel data.
  • Merge Microsoft Excel data with other data sources in your pipeline.
  • Apply machine learning models and other analytics directly to Microsoft Excel datasets.

Save up to 50% on your Databricks spend in a few minutes!

Enter your work email
Enter your work email
Databricks Background Databricks Background

Step-by-Step Guide to Import and Read Excel Files in Databricks

Now, let's dive straight into the main content of this article. We will dive into an in-depth, step-by-step guide on how to import and read Excel files in Databricks. Here, we'll cover two approaches: one using Pandas and another leveraging the com.crealytics.spark.excel library. So, let's dive right in.

Prerequisites

But wait, before you start, make sure you have the following:

  • Databricks account and access to a Databricks workspace.
  • Familiarity with Python programming and Apache Spark is essential for working with Databricks.
  • Make sure the necessary libraries are installed. If not, don't worry; we will cover this in detail later. The required libraries are:
    • Pandas—A powerful data manipulation and analysis library for Python.
    • OpenPyxl—A library used to read and write Excel 2010 xlsx/xlsm/xltx/xltm files.
    • com.crealytics.spark.excel— A Spark plugin that allows you to read and write Excel files.
  • Permissions to interact with the Databricks File System (DBFS) to manage and access your files.
  • Make sure you have the correct file path details in DBFS to locate and manage your files effectively.

With these prerequisites in place, you are now ready to import, process, and read Excel files in Databricks.

🔮 Technique 1—Using Pandas and PySpark to Import Excel Files

Let's first start with our first technique. This approach is straightforward and Pythonic, which is perfect for small to medium-sized Microsoft Excel files.

Step 1—Log in to Databricks Workspace

First, log in to your Databricks account and open your Databricks workspace.

Logging into Databricks account - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Logging into Databricks account

Step 2—Set Up Databricks Compute

Next, you need to set up Databricks compute clusters. You can create a new one or use an existing one that will run your Databricks Notebook.

Setting up Databricks compute in Databricks - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Setting up Databricks compute in Databricks - Read Excel files in Databricks
Setting up Databricks compute in Databricks - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Setting up Databricks compute in Databricks - Import Excel files - Databricks Excel

Step 3—Open Databricks Notebook

Now it's time to create a new Databricks Notebook. This is where you will write all your code and install the necessary libraries.

Opening Databricks Notebook - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Opening Databricks Notebook - Read Excel files in Databricks - Import Excel files

Once you have created your Databricks Notebook, let's attach the Databricks compute that you created earlier and attach it to that particular Databricks Notebook.

Attaching Databricks compute to Databricks Notebook - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Attaching Databricks compute to Databricks Notebook - Import Excel files

Step 4—Install and Import Necessary Libraries

You need the openpyxl library for reading Excel files and pandas for data manipulation and analysis. Install it using the following command:

%pip install pandas openpyxl
Installing and importing pandas and openpyxl library - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Installing and importing pandas and openpyxl library - Read Excel files in Databricks

You can also install it directly on your cluster through the Libraries interface.

Installing and importing pandas and openpyxl library directly via cluster libraries interface - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Installing and importing pandas and openpyxl library directly via cluster libraries inteface

Step 5—Configure Databricks File System (DBFS)

Let's move on to the next step, where we'll configure the Databricks File System, also known as DBFS. DBFS allows you to manage files within Databricks.

To enable Databricks DBFS, click on the user icon located in the top right corner. Then, select the Settings option, which will redirect you to the Settings page.

Navigating to settings options - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Navigating to settings options - Read Excel files in Databricks - Import Excel files

From there, head over to the Advanced section and search for “DBFS” in the search bar. You should now see an option to enable DBFS.

Searching for DBFS in the advanced section - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Searching for DBFS in the advanced section - Import Excel files

Check the box next to Enable DBFS File Browser and then refresh the page for the change to take effect.

You should see a new tab called “DBFS” in the Catalog section, located next to Database tables.

Navigating to Databricks DBFS tab - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Navigating to Databricks DBFS tab - Import Excel files - Databricks Excel
Check out this article, for more indepth info on setting up and configuring Databricks DBFS.

Now that we have successfully activated DBFS, let's upload an Microsoft Excel file.

Step 6—Upload Microsoft Excel Files to Databricks File System (DBFS)

Now that DBFS is configured for file uploads, here’s how to get started:

In the DBFS tab, look for the Upload button—it’s typically located in the top-right corner. Click on it, and a popup window will appear, navigate to your desktop (or wherever your file is stored on your local machine), and select the file you want to upload.

Uploading Excel files to Databricks File System (DBFS) - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Uploading Excel files to Databricks File System (DBFS) - Read Excel files in Databricks
Uploading Excel files to Databricks File System (DBFS) - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Uploading Excel files to Databricks File System (DBFS) - Import Excel files - Databricks Excel
Uploading Excel files to Databricks File System (DBFS) - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Uploading Excel files to Databricks File System (DBFS) - Import Excel files - Databricks Excel

Step 7—Verify Uploaded Excel File

Once the Excel file is uploaded, head back to the Databricks Notebook and write the following line of code.

Verifying uploaded Excel files to Databricks File System (DBFS) - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Verifying uploaded Excel files to Databricks File System - Read Excel files in Databricks

As you can see, it will show the user all the files available in /FileStore of Databricks File System (DBFS).

Step 8—Read Microsoft Excel File Using Pandas

Now that we know the File Format API location, lets read the file using Pandas. Here’s how to load a Microsoft Excel file into a Pandas DataFrame:

import pandas
import openpyxl

df = pandas.read_excel("/dbfs/FileStore/demo_excel.xlsx", engine='openpyxl')

As you can see, pandas.read_excel() can automatically handle Excel files. Note that explicitly importing openpyxl is generally not needed.

Step 9—Check DataFrame properties

You can check the properties of your DataFrame using:

print("Shape:", df.shape)  # Returns number of rows and columns
Checking the properties of DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Checking the properties of DataFrame - Import Excel files - Databricks Excel
print("Columns:", df.columns)  # Returns column names
Checking the properties of DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Checking the properties of DataFrame - Import Excel files - Databricks Excel
print("Data Types:", df.dtypes)  # Returns data types of each column
Checking the properties of DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Checking the properties of DataFrame - Read Excel files in Databricks - Import Excel files
print("First 5 rows:\n", df.head())  # Returns first 5 rows
Checking the properties of DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Checking the properties of DataFrame - Read Excel files in Databricks - Import Excel files
print("Last 5 rows:\n", df.tail())  # Returns last 5 rows
Checking the properties of DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Checking the properties of DataFrame - Read Excel files in Databricks - Import Excel files
print("Summary statistics:\n", df.describe())  # Summary statistics (for numerical columns)
Checking the properties of DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Checking the properties of DataFrame - Read Excel files in Databricks - Import Excel files

Step 10—Convert Pandas DataFrame to Spark DataFrame

To leverage Spark's or Databricks capabilities, convert your Pandas DataFrame into a PySpark DataFrame using spark.createDataFrame() command. Here is what your final code should look like:

import pandas as pd
import openpyxl

df = pd.read_excel("/dbfs/FileStore/demo_excel.xlsx", engine='openpyxl')


# Converting Pandas DataFrame to PySpark DataFrame
spark_df = spark.createDataFrame(df)

spark_df.show()
Converting Pandas DataFrame to Spark DataFrame - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Converting Pandas DataFrame to Spark DataFrame - Import Excel files

When working with Excel files, this technique uses Pandas to get the initial data, then converts it into a PySpark DataFrame for easier processing with Spark. Just keep in mind that Pandas can struggle with complex Excel features and formats. Before using this method, make sure it works with your specific data and Excel files.

🔮 Technique 2—Using com.crealytics.spark.excel Library

Now that we've covered the first technique, let's move on to the second. This one's a bit longer to set up, but it's actually pretty simple to use. We'll be working with the Spark Excel library to read Excel files in Databricks, so let's take a closer look.

Step 1—Log in to Databricks Workspace

As before, the first step is to log in to your Databricks account and navigate to your workspace. Once logged in, make sure you have access to the Databricks workspace where you want to process the Microsoft Excel file.

Step 2—Set Up Databricks Compute

Next, set up a Databricks compute cluster. You can either select an existing Databricks compute or create a new one. Make sure the cluster has sufficient resources to handle your workload and is configured with the necessary runtime version.

Setting up and configuring Databricks compute - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Setting up and configuring Databricks compute - Import Excel files
Setting up and configuring Databricks compute - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Setting up and configuring Databricks compute - Read Excel files in Databricks

Step 3—Navigate to Compute and Select Your Running Cluster

After setting up the cluster, navigate to the Compute section in your Databricks workspace and select the Databricks compute you plan to use. Check that the cluster is running before proceeding further.

Navigating to Databricks compute and selecting running Databricks clusters - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Navigating to Databricks compute and selecting running Databricks clusters - Read Excel

Step 4—Go to Libraries and Install Maven

To install the required library, go to the Databricks compute details page and navigate to the Libraries tab.

Navigating to Databricks clusters Libraries interface - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Navigating to Databricks clusters Libraries interface - Read Excel files in Databricks

Click on Install New and choose Maven as the library source. Maven Library source is a tool for installing external libraries and packages on a Databricks cluster using Maven Coordinates.

Installing library using Maven as library source - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Installing library using Maven as library source - Read Excel files in Databricks

In the Maven tab, click on Search Packages, which will open a package search window.

Searching and Installing library using Maven as library source - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Searching and Installing library using Maven as library source - Read Excel files in Databricks
Searching and Installing library using Maven as library source - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Searching and Installing library using Maven as library source - Read Excel files in Databricks

Step 5—Search for and Install com.crealytics.spark.excel Library

In the package search window, search for spark-excel and select the appropriate version of the library that matches your Databricks runtime and Scala version. For instance, if you are using Databricks Runtime 12.2 LTS (Apache Spark 3.3.2, Scala 2.12), select the compatible Scala 2.12 version of the library. Once you have selected the correct version, install the library. After successful installation, the library will appear in the cluster's library list.

Searching and Installing Spark-excel library using Maven as library source - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Searching and Installing Spark-excel library using Maven as library source - Import Excel files
Searching and Installing Spark-excel library using Maven as library source - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Searching and Installing Spark-excel library using Maven as library source - Import Excel files
Searching and Installing Spark-excel library using Maven as library source - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Searching and Installing Spark-excel library using Maven as library source - Import Excel files

Step 6—Read Excel File Directly into a Spark DataFrame

With the library installed, you can now read the Excel file into a Spark DataFrame. Use the following code snippet to load your Excel file:

spark_df = spark.read.format("com.crealytics.spark.excel") \
    .option("header", "true") \
    .option("inferSchema", "true") \
    .load("/dbfs/FileStore/demo_excel.xlsx")
Reading Excel file directly into a Spark DataFrame - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Reading Excel file directly into a Spark DataFrame

As you can see, here:

  • format("com.crealytics.spark.excel") — Specifies the library to use for reading Excel files.
  • .option("header", "true")— Indicates that the first row of the Excel file contains column headers.
  • .option("inferSchema", "true")— Automatically infers the schema of the data.
  • .load("/<file_path>/<file_name>.xlsx")— Specifies the file path of the Excel file.

Step 7—Validate Data

Finally, use the display() function to visualize the loaded DataFrame and validate that the data has been read correctly. You can perform additional transformations or analysis on the DataFrame as needed.

display(spark_df);
Validating data using Databricks display() function - Read Excel - Read Excel Files - Import Excel - Import Excel Files - Read Excel File in Databricks - Read Excel in Databricks - Databricks Excel - Excel to Databricks - Excel Data Import - Excel - Microsoft Excel - Excel File Formats - Spark Read Excel - com crealytics spark excel - Databricks Read Excel - com crealytics spark excel databricks - Databricks Notebook - Databricks Workspace - Databricks Integration - DataFrame - Spark DataFrame - PySpark DataFrame - Databricks DataFrame - Databricks Pandas - Databricks PySpark - openpyxl - openpyxl python - Data Ingestion - Ingest Data - Data Aggregation - Data Transformation
Validating data using Databricks display() function

Technique 1 vs Technique 2: Which One Should You Choose?

🔮 Technique 1 (using Pandas) Technique 2 (using spark-excel library)
Pros
  • Familiar Python libraries
  • Simple to setup
  • Optimized for distributed processing
  • Handles large files efficiently
Cons
  • Limited scalability for massive files
  • May not support all Excel features
  • Requires additional setup and configuration
TL;DR: Use Pandas with openpyxl for smaller files and com.crealytics.spark.excel for larger or more complex workloads.

Want to take Chaos Genius for a spin?

It takes less than 5 minutes.

Enter your work email
Enter your work email
Databricks Logo

Conclusion

And that's a wrap! Importing and reading Excel files in Databricks is surprisingly easy. This opens up a world of possibilities for data analysis, automation, and integration within your data pipelines. You can tackle anything from small datasets to large, complex workloads with Databricks' robust tools and libraries that make incorporating Excel data into your workflows a breeze.

In this article, we have covered two effective techniques for handling Excel files in Databricks—using Pandas for straightforward tasks and the com.crealytics.spark.excel library for optimized, scalable processing. You're all set to integrate Excel files into your analytics and machine learning workflows. From setup to data validation, you now have a solid understanding of how to handle Excel files with confidence in Databricks.

FAQs

Can Databricks read Excel files directly?

Yes, Databricks can read Excel files directly by using libraries such as com.crealytics.spark.excel for Spark-based processing or Pandas with OpenPyxl for smaller datasets.

How do I import an Excel file into Databricks?

You can import an Excel file by uploading it to DBFS (Databricks File System) and then reading it using either the com.crealytics.spark.excel library for Spark DataFrames or Pandas for smaller data loads.

How do I upload files to DBFS?

To upload files to DBFS, use the following steps:

  • Navigate to the Catalog section.
  • Switch to the DBFS tab, click Upload, and choose Upload File.
  • Select your file and upload it. The file will be stored in the /FileStore directory of DBFS.
  • Or, you can use the Databricks CLI or REST API for programmatic uploads.

Can you import a file into Databricks?

Yes, Databricks allows you to import various file types, including Excel, CSV, and JSON. Files can be uploaded to DBFS or accessed via mounted external storage systems like AWS S3, Azure Blob Storage, or Google Cloud Storage.

What library is best for large Excel files?

For large Excel files, com.crealytics.spark.excel is recommended because it leverages Spark’s distributed computing capabilities, enabling efficient processing of large datasets.

Can Databricks export data back to Excel?

Yes, Databricks can export data to Excel. Convert the DataFrame to a Pandas DataFrame and then save it to an Excel file using Pandas’ to_excel() method with libraries like OpenPyxl.

How do I handle missing data in Excel files?

After loading the Excel file into a DataFrame, use Spark or Pandas functions to handle missing data:

  • Fill missing values: Use .fillna(value) to replace missing values with a default value.
  • Drop missing rows: Use .dropna() to remove rows with missing values.
  • Custom handling: Apply transformations or conditional logic based on your analysis requirements.

How do I read an Excel file in Databricks using PySpark?

Use either Pandas with OpenPyxl or the com.crealytics.spark-excel library for direct reading into Spark DataFrames.

How can I install necessary libraries like Pandas and OpenPyxl in Databricks?

To install libraries in Databricks, use one of the following methods:

  • Via Databricks Notebook command: Use %pip install <library_name> in a notebook cell.
  • Via Databricks Cluster libraries: Navigate to the Libraries tab in the cluster details page, click Install New, and choose PyPI or Maven to install the desired library.

Can I read multiple Excel files from a directory into a single DataFrame?

Yes, you can read multiple Excel files by iterating through the directory and concatenating the data into a single DataFrame. Here is an example using Pandas:

import pandas
import os

path = "/path/to/directory"
all_files = [os.path.join(path, file) for file in os.listdir(path) if file.endswith('.xlsx')]

# Read and concatenate files
dataframes = [pandas.read_excel(file) for file in all_files]
final_df = pandas.concat(dataframes, ignore_index=True)

Can I use R to read Excel files in Databricks?

Yes, you can use R to read Excel files in Databricks by installing the readxl or openxlsx package. For example:

library(readxl)
data <- read_excel("/dbfs/FileStore/path_to_file.xlsx")

Tags

Pramit Marattha

Technical Content Lead

Pramit is a Technical Content Lead at Chaos Genius.

People who are also involved

“Chaos Genius has been a game-changer for our DataOps at NetApp. Thanks to the precise recommendations, intuitive interface and predictive capabilities, we were able to lower our Snowflake costs by 28%, yielding us a 20X ROI

Chaos Genius has given us a much better understanding of what's driving up our data-cloud bill. It's user-friendly, pays for itself quickly, and monitors costs daily while instantly alerting us to any usage anomalies.

Anju Mohan

Director, IT

Simon Esprit

Chief Technology Officer

Join today to get upto
30% Snowflake
savings

Join today to get upto 30% Snowflake savings

Unlock Snowflake Savings Join waitlist
Great! You've successfully subscribed.
Great! Next, complete checkout for full access.
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.